
F. Putz, S. Schön, M. Hollick (2021) Future-Proof Web Authentication: Bring Your Own
FIDO2 Extensions. In: 4th International Workshop on Emerging Technologies for Au-
thorization and Authentication. ETAA 2021. LNCS 13136. Springer, Cham, pp. 17–32,
2021. This is the author’s version of the work. It is posted for your personal use. The final
publication is available at Springer via https://doi.org/10.1007/978-3-030-93747-8_2.

Future-Proof Web Authentication:
Bring Your Own FIDO2 Extensions

Florentin Putz, Steffen Schön, and Matthias Hollick

TU Darmstadt, Germany
{fputz,sschoen,mhollick}@seemoo.de

Abstract. The FIDO2 standards for strong authentication on the Inter-
net define an extension interface, which allows them to flexibly adapt to
future use cases. The domain of establishing new FIDO2 extensions, how-
ever, is currently limited to web browser developers and members of the
FIDO alliance. We show how researchers and developers can design and
implement their own extensions for using FIDO2 as a well-established
and secure foundation to demonstrate innovative authentication concepts
or to support custom deployments. Our open-source implementation tar-
gets the full FIDO2 stack, such as the Chromium web browser and hard-
ware tokens, to enable tailor-made authentication based on the power
of the existing FIDO2 ecosystem. To give an overview of existing exten-
sions, we survey all published FIDO2 extensions by manually inspecting
the source code of major web browsers and authenticators. Their current
design, however, hinders the implementation of custom extensions, and
they only support a limited number of extensions out of the box. We
discuss weaknesses of current implementations and identify the lack of
extension pass-through as a major limitation in current FIDO2 clients.

Keywords: Security · Authentication · Key Management · Hardware
Token · Passwordless · WebAuthn

1 Introduction

Stronger forms of authentication than passwords can protect online accounts
from phishing attacks and mitigate the impact of data breaches. The FIDO2
standards [8] are now implemented in all major web browsers and allow users to
securely log in to websites without passwords, using either a hardware security
key (e.g., a YubiKey [28]) or a built-in authenticator in modern smartphones
or laptops. Website operators can easily implement support for FIDO2 using
the WebAuthn JavaScript API [25], which also supports custom extensions to
implement special use cases.

Extensible web standards such as X.509 [2] or TLS [3] have played a key role
during the advancement of the Internet so far. A standards organization such as
the IETF cannot predict all possible future use cases of the standard beforehand,
but custom extensions provide flexibility to the otherwise fixed specification and
prevent fragmentation via the creation of new competing standards to satisfy

https://doi.org/10.1007/978-3-030-93747-8_2
https://doi.org/10.1007/978-3-030-93747-8_2


18 F. Putz et al.

new use cases. The behavior of a protocol can then be modified without the
effort to get the modifications accepted into the main standard.

Why extend FIDO2? At its core, FIDO2 is a well-established and secure
platform for accessing public-key credentials, with little restrictions imposed on
the authenticator. In the future, however, innovative authentication approaches
might require modifications to the standard, e.g., by transmitting or receiving
additional information to the authenticator. FIDO2 extensions can be used to
support new uses cases, implement additional features, and mitigate shortcom-
ings of the standard.

The potential of FIDO2 extensions becomes clear by looking at the exten-
sions that have been proposed so far: A major weakness of FIDO2 is the lack
of efficient recovery options, which has been criticized in previous user stud-
ies [15,5,1]. Yubico proposed a new FIDO2 extension to address this problem,
by implementing an efficient way to automatically register backup credentials,
which can be used in case the authentication token gets lost [30].

Developers and researchers can also use FIDO2 extensions to prototype and
demonstrate new authentication designs within the existing FIDO2 ecosystem
on real-world web browsers. Companies can use FIDO2 extensions to adapt the
protocol for tailor-made authentication in internal deployments.

Web browsers, however, currently do not support any third-party FIDO2 ex-
tensions. Furthermore, there is no clear development path to implement custom
extensions in current web browsers. Even FIDO2 extensions which do not require
any special processing by the web browser need explicit browser support instead
of automatically being forwarded to the authenticator. Although extensions are
an important part of any standard, the extensibility of the FIDO2 standards un-
fortunately has not received much attention as of today. This calls for a detailed
analysis of FIDO2 extensions:

– As our core contribution, we show how to design and implement tailor-
made authentication based on the power of the existing FIDO2 ecosystem
(Section 5). Our source code and additional documentation is available at
https://seemoo.de/s/fido2ext.

– We survey all publicly known FIDO2 extensions by manually inspecting
the source code of major web browsers and authenticators. (Section 3 and
Section 4).

– We describe limitations of current FIDO2 extension implementations and
identify the lack of extension pass-through as a major weakness that inhibits
the development of innovative FIDO2 extensions (Section 6).

2 Background

2.1 FIDO2

Strong and passwordless authentication has been standardized by the FIDO
industry alliance and the World Wide Web Consortium (W3C) in form of the

https://seemoo.de/s/fido2ext


Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 19

FIDO2 standards [8]. The top part of Figure 1 shows the FIDO2 system model,
consisting of relying party (RP), client, and authenticator. In essence, FIDO2 is a
challenge-response protocol, which RPs such as websites can use to access public
key credentials, managed for the user by an authenticator. The authenticator can
be embedded into the client device or attached as an external hardware token
via USB, NFC, or Bluetooth. It mainly supports the following two operations:

1. authenticatorMakeCredential: The authenticator generates a new key
pair, binds it to the requesting RP, and returns the public key and op-
tionally an attestation signature. Websites use this operation to implement
account registration.

2. authenticatorGetAssertion: The authenticator returns an assertion signa-
ture over a challenge from the RP. Websites use this operation to implement
account login.

The client (e.g., a web browser) forwards the RP’s requests to the authentica-
tor, which stores all key material. FIDO2 consists of two specifications, WebAu-
thn (Web Authentication) [25] and CTAP (Client to Authenticator Protocol) [6],
which succeed the older Universal 2nd Factor (U2F) standard [7]. All major web
browsers implement FIDO2 [17] and there exists a large ecosystem of commercial
hardware tokens, e.g., Yubico’s YubiKey [28].

2.2 FIDO2 Extensions

The FIDO2 authentication protocols WebAuthn and CTAP2 can be extended to
support special use cases. Figure 1 shows the general protocol flow of a FIDO2
extension, as specified by §9 of the WebAuthn specification [25]. The RP initi-
ates an extension request with the client, which then processes the request and
responds to the RP. WebAuthn distinguishes between different types of exten-
sions. An extension is always a client extension, as it involves communication
with the client. The extension specification defines the form of the JSON client
extension input/output and what kind of client extension processing the client
needs to perform to transform the inputs to the outputs.

If the extension also involves processing on the authenticator, it is addition-
ally an authenticator extension and defines the form of the concise binary object
representation (CBOR) authenticator extension input/output and what kind of
authenticator extension processing the authenticator needs to perform to trans-
form the inputs to the outputs. In this case, the client also needs to know how to
convert the JSON client extension input to the CBOR authenticator extension
input, and how to convert the CBOR authenticator extension output back to the
JSON client extension output.

FIDO2 extensions also are registration extensions and/or authentication ex-
tensions, depending on which part of the protocol they affect. We describe further
implementation details in Section 5.

Each FIDO2 extension has an extension identifier string, which can be regis-
tered in the IANA “WebAuthn Extension Identifiers” registry [12]. This registry



20 F. Putz et al.

Relying Party Client Authenticator

WebAuthn CTAP

client ext. input

(JSON) (CBOR)

client ext. output

C
l
ie
n
t
E
x
t
e
n
si
o
n

client ext. input

client ext. output

cl
ie
n
t

ex
te
n
si
o
n

p
ro
ce
ss
in
g

A
u
t
h
e
n
t
ic
a
t
o
r
E
x
t
e
n
si
o
n

create(),
get()

authenticator ext. input

cl
ie
n
t

p
ro
ce
ss
in
g

a
u
th

en
ti
ca

to
r

ex
te
n
si
o
n

p
ro
ce
ss
in
g

ex
te
n
si
o
n

authenticator ext. output

C
l
ie
n
t
E
x
t
e
n
si
o
n
+

create(),
get()

Fig. 1. Protocol flow of FIDO2 extensions. Extensions can communicate between RP,
client, and authenticator (top). An extension is always a client extension (middle) but
can also additionally be an authenticator extension (bottom).

has been defined and established by RFC 8809 [11] and contains an up-to-date
list of all currently registered WebAuthn extension. We describe all currently
available FIDO2 extensions in Section 3.

Authenticators supporting CTAP 2.1 must implement the hmac-secret ex-
tension and the credProtect extension if they support some form of user verifi-
cation (§9 in CTAP2 [6]). Clients can use the CTAP authenticatorGetInfo
method to detect which extensions an authenticator supports. We give an
overview of which FIDO2 extensions are supported by popular browsers and
authenticators in Section 4.

2.3 Extension Pass-Through

In general, clients and authenticators do not need to support any WebAuthn ex-
tensions and can simply ignore them as they are all optional. RPs must therefore
be prepared to deal with any subset of requested extensions being ignored, as
this must never fail the WebAuthn transaction. To increase compatibility with
unknown extensions, clients can choose to directly pass through extension inputs
to the authenticator and outputs to the RP, without any additional client pro-
cessing. The WebAuthn standard defines conversion rules between JSON and
CBOR to facilitate this [26]. Authenticators must be prepared to ignore such
inputs in case such a direct pass-through results in invalid inputs.



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 21

To increase compatibility, extensions that do not require special client pro-
cessing should define the authenticator input and outputs in such a way that
direct pass-through results in semantically correct values. Clients that imple-
ment pass-through facilitate innovation as they allow extensions to work when
only the authenticator explicitly supports them.

3 Survey: Existing FIDO2 Extensions

Our survey on FIDO2 extensions consists of two parts: (1) This section is the
first part, where we identify all extensions that have been published so far. (2)
Section 4 is the second part, where we determine which clients and authenticators
support these extensions. Table 1 shows the results of our survey.

Most extensions are specified in the FIDO2 standards themselves (“standard
extensions”), such as the hmac-secret extension for using a symmetric key with
a FIDO2 credential [6]. Additionally, there are three non-standard extensions
which are not specified in the official FIDO2 standards. First, there is Yubico’s
recovery extension [30], which has a separate specification but no web browser
implementation yet. Second, there is Google’s caBLE extension [19], which is part
of the Google Chrome browser but has no public specification. Third, there is
the googleLegacyAppIdSupport extension [13], which is implemented in some
browsers but has no formal specification yet. We briefly introduce the standard
extensions and then go over the non-standard extensions in more detail, as they
are currently less well-known.

3.1 Standard Extensions

We refer to the extensions defined in the FIDO2 standards as standard exten-
sions. At the time of writing, the IANA registry [12] contains eight registered
extension identifiers, which are all specified in WebAuthn Level 1 [24]. WebAu-
thn Level 2 defines three additional extensions and also plans to register them
(§12.4 in [25]). Furthermore, CTAP 2.1 defines five extensions and plans to regis-
ter them as well (§14.1 in [6]). One of them is the hmac-secret extension, which
allows requesting a symmetric secret from an authenticator to encrypt and de-
crypt user data. This extension can support new use cases where a static secret is
necessary, such as disk encryption or unlocking password managers like KeePass.
The other standard extensions enable features such as compatibility with legacy
Universal 2nd Factor (U2F) credentials, specifying a credential protection pol-
icy, or storing arbitrary data associated with a credential. The FIDO2 standards
contain further information on each extension as well as a formal specification.

3.2 Recovery Extension (Yubico)

Recovery and backups still are open problems within the FIDO2 standards, as
the current best practice of manually registering multiple tokens on each RP has
low usability. Yubico aims to solve this problem using the recovery extension,



22 F. Putz et al.

which currently has a draft specification available online [30]. This extension
allows automatically registering a backup authenticator for recovery purposes
without needing to have the backup authenticator physically available at the
time of registration, so that it can be permanently stored at a secure location.
Their proposal is based on a key agreement scheme where the primary authenti-
cator generates nondeterministic public keys, but only the backup authenticator
can derive the corresponding private keys. This enables a usable recovery process
while maintaining the FIDO2 privacy protections of unlinkable public keys. Fry-
mann et al. generalized the procedure to Asynchronous Remote Key Generation
(ARKG) and proved the cryptographic security of such protocols [9].

3.3 CaBLE Extension (Google)

Google proposed caBLE (Cloud-Assisted Bluetooth Low Energy), which allows
using a smartphone as a FIDO2 roaming authenticator via BLE [19,20]. The
caBLE protocol consists of two phases: A pairing phase using a QR code, which
encodes a nonce to derive key material. Afterwards, the smartphone broadcasts
advertisements via BLE, which the web browser recognizes to initiate a hand-
shake phase to establish a CTAP2 channel. There is no public specification
available for caBLE and it is currently implemented only in the Chrome web
browser and in Android smartphones via the proprietary Google Play Services.
The Chromium implementation hints at a WebAuthn registration extension with
client input cableRegistration and an authentication extension with client in-
put cableAuthentication. The communication with the smartphone is not im-
plemented using the standard FIDO2 extension API, but using a custom CTAP2
transport instead.

3.4 GoogleLegacyAppIdSupport Extension (Google)

Google proposed the googleLegacyAppIdSupport extension [13] to provide com-
patibility with some Android factory images, which only support the U2F
JavaScript API and cannot be patched with WebAuthn support. Google Chrome
plans to deprecate the U2F API, but credentials created using WebAuthn are
normally not backwards compatible with the U2F JavaScript API. This exten-
sion allows creating WebAuthn credentials which work with both WebAuthn and
U2F, by using a hard-coded U2F AppID specific to Google Accounts, limited to
*.google.com domains.

4 Survey: Compatibility of FIDO2 Extensions

While the first part of our survey identified all currently known FIDO2 exten-
sions, this section contains the second part of our survey, where we determine the
client and authenticator support for all FIDO2 extensions. Since it is standard
compliant for a client to ignore any extensions, the currently available feature
trackers for web browser WebAuthn implementations do not indicate support



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 23

Table 1. FIDO2 extension compatibility as of July 2021.

Identifier C
hr

om
e

E
dg

e
Fi

re
fo

x
Sa

fa
ri

lib
fid

o2
py

th
on

-fi
do

2

W
in

do
w

s
H

el
lo

Y
ub

iK
ey

5
So

lo
K

ey
O

pe
nS

K

Specification R
ef

er
en

ce

IA
N

A
R

eg
is

tr
at

io
n?

appid 3 3 3 3 7 3 - - - - WebAuthn2 §10.1 [25] 3

appidExclude 3 3 7 7 7 7 - - - - WebAuthn2 §10.2 [25] 7

authnSel 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.4 [24] 3

biometricPerfBounds 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.9 [24] 7

credBlob 3 3 7 7 3 3 3 7 7 7 CTAP2 §12.2 [6] 7

credProps 3 3 7 7 7 7 - - - - WebAuthn2 §10.4 [25] 7

credProtect 3 3 7 7 3 3 3 3 3 3 CTAP2 §12.1 [6] 7

exts 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.5 [24] 3

hmac-secret 3 3 3 7 3 3 7 3 3 3 CTAP2 §12.5 [6] 7

largeBlob 3 3 7 7 7 7 7 7 7 7 WebAuthn1 §10.5 [24] 7

largeBlobKey 3 3 7 7 3 3 7 7 7 7 CTAP2 §12.3 [6] 7

loc 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.7 [24] 3

minPinLength 7 7 7 7 7 3 3 7 7 7 CTAP2 §12.4 [6] 7

txAuthSimple 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.2 [24] 3

txAuthGeneric 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.3 [24] 3

uvi 7 7 7 7 7 7 7 7 7 7 WebAuthn1 §10.6 [24] 3

uvm 3 3 7 7 7 7 7 7 7 7 WebAuthn2 §10.3 [25] 3

caBLE 3 3 7 7 7 7 7 7 7 7 [19] 7

googleLegacyAppIdSupport 3 3 7 3 7 7 7 7 7 7 [13] 7

recovery 7 7 7 7 7 7 7 7 7 7 [30] 7

for individual extensions. Table 1 gives an overview of FIDO2 extension support
for popular web browsers, client libraries, and authenticators. In the following,
we explain our methodology and results in more detail.

4.1 Web Browsers

There is no automatic way to query all extensions supported by a web browser, so
we need to manually inspect each browser’s source code to see which FIDO2 ex-
tensions they implement. We checked the Chromium source code1 (which forms
the base of Google’s Chrome browser and Microsoft’s Edge browser), the Gecko
source code2 (which corresponds to Mozilla’s Firefox browser), and the WebKit
source code3 (which forms the base of Apple’s Safari browser). Table 1 shows
1 Chromium version canary 93.0.4570.0 → Google Chrome 93, Microsoft Edge 93.
2 Gecko version version nightly 91.0a1 → Mozilla Firefox 91.
3 WebKit version 611.2.7.1 → Apple Safari 14.1.1.



24 F. Putz et al.

all WebAuthn and CTAP2 extensions currently supported by these browsers.
Chrome supports 11 FIDO2 extensions, including the non-standard caBLE ex-
tension, while Firefox and Safari only support two extensions each. All browsers
support the appid extensions for compatibility with legacy U2F credentials.

Extension pass-through is an important feature that allows FIDO2 clients
to transparently forward extension inputs and outputs between RP and authen-
ticator, even for unknown extensions. The WebAuthn specification notes that
extension pass-through can “facilitate innovation, allowing authenticators to ex-
periment with new extensions and RPs to use them before there is explicit sup-
port for them in clients.” [26]. While inspecting the web browser source codes,
however, we noticed that no web browser currently supports extension pass-
through. This makes it very difficult to establish custom extensions, as users
will not be able to use them.

4.2 Client Libraries

Yubico’s python-fido2 library [27] can be used to implement custom FIDO2
clients that interface with CTAP authenticators. It currently supports six FIDO2
extensions as of version 0.9.1. This library is especially interesting for researchers
and developers as it provides an easy interface for implementing custom CTAP2
extensions. Yubico also provides the C library libfido2 [29] for interacting with
FIDO2 authenticators, with bindings available to many other languages. This
library supports four different FIDO2 extensions as of version 1.7.0.

4.3 Authenticators

To query the extensions supported by different FIDO2 authenticators, we use the
authenticatorGetInfo CTAP2 request to retrieve a list of supported extensions
in the extensions response field. As not all extensions are specified to announce
themselves this way, we also manually inspect the authenticator’s source code if
available. We looked at Yubico’s YubiKey 5 NFC, YubiKey 5C NFC, the open
source Solo4 C implementation (which powers the SoloKey, the NitroKey, and
the OnlyKey), and Google’s open source OpenSK5 authenticator implementation
written in Rust. All tokens only support the credProtect and the hmac-secret
extensions.

In addition to these roaming authenticators, it is also possible to use plat-
form authenticators. Microsoft provides Win32 headers for communicating with
the Windows Hello platform authenticator and with roaming authenticators in
general [18]. The actual implementation of these APIs is proprietary, but devel-
opers can use these headers to support FIDO2 authentication on Windows. As
of WEBAUTHN_API_VERSION_3, Windows implements three FIDO2 extensions. It
also partially implements hmac-secret, but obtaining the secret is not supported
yet.
4 Solo version 4.1.2.
5 OpenSK version 1.0.0.



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 25

4.4 Summary
The survey in the last two sections shows that FIDO2 extensions have the po-
tential to solve major weaknesses of the FIDO2 standards, such as the lack of
efficient recovery options. Support of these extensions by web browsers, clients,
and authenticators is currently weak, however, as shown in Table 1. Some ex-
tensions defined in the FIDO2 standards have no support at all. Extension pass-
through would improve the compatibility of FIDO2 clients with current and
future FIDO2 extensions, which would facilitate researchers and developers to
create their own extensions, to add new features or to solve shortcomings of
FIDO2.

5 Design and Implementation of Custom Extensions

In order to showcase the possibilities of FIDO2 extensions and the required steps
to implement one, we define a proof-of-concept extension that we implement on
all parts of the FIDO2 stack: RPs (web applications), clients (browser and non-
browser), and authenticators. Implementing a custom FIDO2 extension is not
straightforward and often undocumented, so we try to facilitate the process for
other researchers and developers. We start by defining our extension and then
describe the process of implementing this extension for each affected component.
Our source code as well as supplemental material is available online6.

There are two primary requirements for our proof-of-concept extension.
First, it should use all capabilities that FIDO2 extensions offer, namely inputs,
outputs, and usage in both registration (makeCredential) and authentication
(getAssertion). Second, it should be simple in order to allow readers to focus
on the implementation of an extension in general instead of the functionality of
our example. Thus we choose to define and implement the greeter extension,
which implements a concept that is well known in communications.
Definition 1 (Greeter Extension). The greeter extension is an authentica-
tor extension, which allows the authenticator to respond to the RP with a greet-
ing message. We define an input string, which is the name of the sender (e.g.,
“John”). We also define an output string, which is the greeting message (e.g.,
“Hello John”). This extension requires no special client extension processing,
as the client can simply pass through all inputs/outputs to/from the authentica-
tor. The authenticator extension processing consists of constructing the greeting
message from the input string and returning it. Our greeter extension uses the
identifier greeter in both CTAP and WebAuthn.

5.1 Relying Party
The RP initiates the FIDO2 authentication protocol and can include exten-
sions in its requests. To demonstrate this, we implement our FIDO2 exten-
sion in a proof-of-concept web application, which uses the native browser
6 Online repository with our source code and additional documentation on how to

implement your own FIDO2 extensions: https://seemoo.de/s/fido2ext

https://seemoo.de/s/fido2ext


26 F. Putz et al.

JavaScript WebAuthn APIs supported by all modern browsers [16]. The pro-
cess of using extensions for registration (makeCredential) and authentication
(getAssertion) is very similar. To register a credential using the browser API,
we use navigator.credentials.create(). This function takes a parameter
object with the publicKey member in case of WebAuthn.

The publicKey object accepts an extensions attribute that contains
the extension identifier including inputs: extensions: {"greeter": "John"}.
In this case we do not use a backend to generate the challenge and var-
ious other values. In practice, those values should not be computed on
the client side. After the extension was successfully processed by browser
and authenticator, the outputs of the extension can be accessed using
credential.getClientExtensionResults(), which returns an object with the
extension identifiers as keys and the respective extension outputs as values.

5.2 Web Browser
Web browsers are the most common FIDO2 client and are next in the FIDO2
stack. They receive the authentication request from the RP and communicate
with the authenticator. As web browsers do not currently support FIDO2 exten-
sion pass-through, we need to modify the browser to support our custom exten-
sion. We have implemented the greeter extension in the Chromium browser,
as it is the foundation of the most popular web browser on the market, Google
Chrome. Unfortunately, Chromium does not implement FIDO2 extension sup-
port in a modular way, which means that we need to modify different components
of the browser stack in order to implement support for our greeter extension.
Chromium does not provide any documentation for this, so we had to find out the
correct approach by inspecting the implementation of other FIDO2 extensions
in the source code.

Figure 2 shows how Chromium processes and sends FIDO2 extensions to
authenticators. Let us assume a web application with the JavaScript code de-
scribed in the previous section. Chromium’s rendering engine Blink contains
the V8 JavaScript engine, which runs this code and dispatches the command
navigator.credentials.create() to the corresponding Blink module imple-
menting this Web Platform API. This command is part of the general Credential
Management API7, which gets called first. This gets treated as a WebAuthn re-
quest in CredentialsContainer::create(), because we specified publicKey
in the code above.

The JavaScript request contains a parameter object following
the PublicKeyCredentialCreationOptions WebIDL specification.
This object also contains the client extension inputs according to
AuthenticatorExtensionsClientInputs, which we need to modify to
include our own extension input. In Chromium, these parameters from
JavaScript get converted into Mojo structures in authenticator.mojom8,
7 Chromium Credential Management API (Blink):

third_party/blink/renderer/modules/credentialmanager/
8 Chromium WebAuthn Mojo (Blink): third_party/blink/public/mojom/webauthn/



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 27
V
8

B
l
in
k

C
o
n
t
e
n
t

D
e
v
ic
e

RP JavaScript

CTAP

CredMan: CredentialsContainer::create()

AuthenticatorCommon::MakeCredential() RequestExtension

IDL: AuthenticatorExtensionsClientInputs Type Conversion

Mojo Interface: authenticator.mojom PublicKeyCredentialCreationOptions

CTAPMakeCredentialRequestMakeCredentialRequestHandler

navigator.credentials.create()JavaScript Engine

Fig. 2. Chromium’s FIDO2 client implementation, showing the data and processing
flow for sending extensions to an authenticator.

which are used for IPC between different parts of Chromium. In our case,
the relevant Mojo structure is PublicKeyCredentialCreationOptions. We
need to change both the Mojo structure and the converter from IDL to Mojo.
Afterwards, the call arrives at AuthenticatorCommon::MakeCredential()
inside Chromium’s content layer9. We need to modify this function to
include our extension as a RequestExtension. This function then calls the
MakeCredentialRequestHandler inside Chromium’s device layer10. We
modify the CTAPMakeCredentialRequest, which converts our request into a
CTAP message. Afterwards, this gets sent to the authenticator, which responds
back to us.

The response path is similar and traverses back to the content layer and
finally to the Blink layer, where the client extension output gets converted into
the WebIDL AuthenticationExtensionsClientOutputs and passed back to
the V8 JavaScript engine.

9 Chromium Web Authentication (content): content/browser/webauth/
10 Chromium CTAP (device): device/fido/



28 F. Putz et al.

5.3 Client Library

Besides browsers, it is also possible to implement a FIDO2 client in desk-
top applications. The python-fido2 library [27] by Yubico provides the client
functionality to communicate with an authenticator using CTAP2 in Python.
Although not officially documented, the library can be extended with cus-
tom FIDO2 extensions due to its modular design. We have implemented
our custom extension by inheriting from the Ctap2Extension class, which
is located in fido2/ctap2/extensions.py. There are two abstract methods,
process_create_input and process_create_output, which need to be im-
plemented in order to use extension inputs and outputs. The subclass does
not have to be registered anywhere, as Fido2Client considers all subclasses
of Ctap2Extension when parsing a request or response.

5.4 Authenticator

The final component involved in FIDO2 is the authenticator. When implement-
ing a FIDO2 extension, there are a number of open source hardware security
token implementations available that we can build on:

– SoloKeys Solo 1 [21]
– SoloKeys Solo 2 [23]
– Google OpenSK [10]

While Solo 2 is still in early development and thus might not be suitable
yet, Solo 1 and OpenSK are in a state that can be used to implement cus-
tom extensions. We have implemented the greeter extension in Solo 1, but
describe the process for both Solo 1 and OpenSK. Neither project has a modu-
lar software architecture for implementing FIDO2 extensions, as all extensions
are hard-coded at different code locations across the CTAP stack. Solo 1, how-
ever, provides documentation on how to implement custom extensions [22]. For
OpenSK, we figured out the correct approach by inspecting the implementation
of other FIDO2 extensions in the source code. In general, when implementing
an extension for an authenticator, three modifications are required independent
of the CTAP implementation:

– Announcing the support for the extension in the CTAP 2 getInfo function.
• In Solo: ctap_get_info().
• In OpenSK: process_get_info().

– Parsing and processing the extension inputs.
• In Solo: struct CTAP_extensions, ctap_parse_extensions().
• In OpenSK: struct MakeCredentialExtensions,
MakeCredentialExtensions::try_from(),
create_make_credential_parameters_with_cred_protect_policy().

– Building the extension outputs.
• In Solo: ctap_make_extensions().
• In OpenSK: process_make_credential().



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 29

6 Discussion

6.1 Extension Pass-Through

In the previous sections, we showed that FIDO2 extensions can address short-
comings of the current FIDO2 standards and allow them to easily adapt to new
use cases. In practice, the applicability of FIDO2 extensions is limited due to
browser design decisions. In order to facilitate the development and usage of in-
novative FIDO2 extensions, we argue that web browsers should pass-through un-
known extensions to authenticators, as the WebAuthn specification suggests [26].

Some custom FIDO2 extensions might pose the risk of exposing too much
fine-grained data to RPs, which would allow them to discriminate between au-
thenticators. This is the reason why Chromium does not support the official uvi
and uvm extensions [14]. This potential problem can be approached by letting the
user opt-in to pass-through custom FIDO2 extensions, e.g., via a configuration
option in chrome://settings/securityKeys or via the permission API that is
already used for camera or microphone access.

6.2 Supporting FIDO2 Extensions via Browser Extensions

Apart from supporting pass-through, web browsers can also facilitate the de-
velopment of innovative FIDO2 extensions by making it easier to implement
them. As we have shown before, Chromium’s support for FIDO2 extensions is
currently hard-coded in many different parts of the browser stack. This could be
improved using a modular architecture. Another interesting approach would be
to allow implementing custom FIDO2 extensions as regular web browser exten-
sions. Chromium already has an extensive web extensions API, which could be
extended with an API for FIDO2 extensions. This would also facilitate the use
case of internal company deployments, as it is already possible in an enterprise
setting to provision web browsers with a set of extensions.

6.3 Outlook

Without support for custom FIDO2 extensions in web browsers, it is unlikely
that FIDO2 extensions will be utilized to a similar extent than X.509 or TLS
extensions (see Section 7). The domain of developing new FIDO2 extensions cur-
rently is rather limited to developers of web browsers or members of the FIDO
Alliance, like Google is already doing with their caBLE extension. Third-party
developers have difficulties of implementing and testing their custom FIDO2
extensions in web browsers. In practice, the primary use case of custom exten-
sions is probably not the public Internet but rather internal deployments with
a limited target audience. In this case, the argument of possible authenticator
discrimination is not applicable anymore as these internal deployments already
have custom authentication policies in place.

The previously mentioned restriction on the usage of custom extension might
also explain the limited support for implementing custom extensions in FIDO2



30 F. Putz et al.

authenticators and clients. Documentation is often limited, if available at all. The
software architectures are not designed to be modular with regards to FIDO2
extensions. One instance of a well designed modular extension architecture is
the python-fido2 client library, although it still requires modification of the
internal source code and lacks public documentation.

7 Related Work

FIDO2 is not the first protocol that allows the definition of extensions in order
to extend the capabilities of the specified protocol. There are a number of other
protocols or data formats that support extensions and successfully integrate
them in real world usage, two of which we describe in more detail:

– X.509 Certificates: In the context of public key infrastructures, the use
of X.509 [2] certificates is very common. X.509 allows the inclusion of ad-
ditional fields in certificates, revocation lists, etc. through extensions. In
practice, these extensions are heavily used to address issues that cannot be
solved using the specification alone. An example is the subject alternative
name extension, which allows the declaration of additional identities of the
certificate subject, as the basic certificate only allows a common name.

– TLS: The transport layer security protocol provides a secure communication
layer for otherwise insecure protocols such as HTTP. Since TLS 1.2 [3],
additional data can be communicated in the handshake of the protocol using
extensions [4]. These can, for example, be used to let clients specify the
domain of the requested resources in addition to the IP address using the
server name indication extension. In the modern web, servers often do not
only serve a single domain but a number of domains. If different certificates
are used for the different domains, the server cannot know which certificate
to include in the response without the server name indication extension.

In summary, extensible protocols are easier to adapt to new use cases, which
prevents fragmentation. This is especially important for authentication protocols
such as FIDO2, which so far have not managed to get widespread adoption to
replace passwords.

8 Conclusion

In this paper, we showed that the extensibility of the FIDO2 standards is an im-
portant feature to remain flexible and future-proof. We demonstrated how to de-
sign and implement new FIDO2 extensions in web browsers, client libraries, and
authenticators. This allows researchers and developers to use the existing FIDO2
infrastructure as a secure foundation for custom authentication deployments or
for demonstrating new authentication approaches with real-world browsers and



Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions 31

hardware. We surveyed all existing FIDO2 extensions and determined their re-
spective support by web browsers and authenticators. A small number of exten-
sions have widespread support, but most extensions have only minimal support
or no support at all.

Current FIDO2 client implementations limit FIDO2’s extensibility due to
missing features and complex software architectures. We also showed that web
browsers should (1) implement a configuration option that enables FIDO2 exten-
sion pass-through, and (2) consider extending the regular web browser extensions
API to allow implementing custom FIDO2 extensions as, e.g., Chrome exten-
sions. Both steps would empower researchers and developers to create their own
extensions.

Acknowledgements. This work has been funded by the LOEWE initiative
(Hesse, Germany) within the emergenCITY center. We thank the anonymous
reviewers for reviewing this paper and for their helpful comments.

References

1. Ciolino, S., Parkin, S., Dunphy, P.: Of two minds about two-factor: Understanding
everyday FIDO U2F usability through device comparison and experience sam-
pling. In: Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019).
pp. 339–356. USENIX Association, Santa Clara, CA (Aug 2019)

2. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, RFC Editor (May 2008), http://www.rfc-editor.org/rfc/rfc5280.
txt

3. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246, RFC Editor (Aug 2008), http://www.rfc-editor.org/rfc/rfc5246.txt

4. Eastlake, D.: Transport layer security (TLS) extensions: Extension definitions.
RFC 6066, RFC Editor (Jan 2011), http://www.rfc-editor.org/rfc/rfc6066.txt

5. Farke, F.M., Lorenz, L., Schnitzler, T., Markert, P., Dürmuth, M.: “you still use
the password after all” – exploring FIDO2 security keys in a small company. In:
Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020). pp. 19–35.
USENIX Association (Aug 2020)

6. FIDO Alliace: Client to authenticator protocol (CTAP) (Jun 2021),
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-
protocol-v2.1-ps-20210615.html

7. FIDO Alliance: FIDO U2F raw message formats (Apr 2017), https:
//fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-
v1.2-ps-20170411.html

8. FIDO Alliance: FIDO2: Moving the world beyond passwords using WebAuthn &
CTAP (Jun 2020), https://fidoalliance.org/fido2

9. Frymann, N., Gardham, D., Kiefer, F., Lundberg, E., Manulis, M., Nilsson, D.:
Asynchronous remote key generation: An analysis of yubico’s proposal for W3C
WebAuthn. Association for Computing Machinery, New York, NY, USA (Oct
2020). https://doi.org/10.1145/3372297.3417292

10. Google: OpenSK. https://github.com/google/OpenSK (2020)

http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc6066.txt
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/fido2
https://doi.org/10.1145/3372297.3417292
https://github.com/google/OpenSK


32 F. Putz et al.

11. Hodges, J., Mandyam, G., Jones, M.B.: RFC 8809: Registries for web authenti-
cation (WebAuthn). RFC 8809, RFC Editor (Aug 2020), https://www.rfc-editor.
org/rfc/rfc8809.txt

12. IANA: Web authentication (WebAuthn) registries (Aug 2020), https://www.iana.
org/assignments/webauthn/webauthn.xhtml

13. Kreichgauer, M.: Intent to deprecate and remove: U2F API (cryptotoken). https:
//groups.google.com/a/chromium.org/g/blink-dev/c/xHC3AtU_65A (2021)

14. Langley, A.: Re: Issue 1097972: Support WebAuthn uvi & uvm extension (Jun
2020), https://bugs.chromium.org/p/chromium/issues/detail?id=1097972#c3

15. Lyastani, S.G., Schilling, M., Neumayr, M., Backes, M., Bugiel, S.: Is
FIDO2 the kingslayer of user authentication? a comparative usability study
of FIDO2 passwordless authentication. In: 2020 IEEE Symposium on Secu-
rity and Privacy (SP). pp. 842–859. IEEE Computer Society (May 2020).
https://doi.org/10.1109/SP40000.2020.00047

16. MDN: Web authentication API. https://developer.mozilla.org/en-US/docs/Web/
API/Web_Authentication_API (2021)

17. MDN: Web authentication API: Browser compatibility (Mar 2021),
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_
API#Browser_compatibility

18. Microsoft: Win32 headers for WebAuthn. https://github.com/microsoft/webauthn
(2021)

19. Mooney, N.: Addition of a network transport. https://github.com/w3c/webauthn/
issues/1381 (2020)

20. Protalinski, E.: You can now use your android phone as a 2FA security key for
google accounts. VentureBeat (Apr 2019), https://venturebeat.com/2019/04/10/
you-can-now-use-your-android-phone-as-a-2fa-security-key-for-google-accounts

21. SoloKeys: Solo 1: open security key supporting FIDO2 & U2F over USB + NFC.
https://github.com/solokeys/solo (2018)

22. SoloKeys: Tutorial: Writing an extension for the solo stick. https://github.com/
solokeys/solo/blob/b86f0ee4e563f0b5ceb69770a6d6f64e42a688b6/docs/tutorial-
getting-started.md (2020)

23. SoloKeys: Solo 2 monorepo. https://github.com/solokeys/solo2 (2021)
24. W3C: Web authentication: An API for accessing public key credentials -

level 1. W3C recommendation (Mar 2019), https://www.w3.org/TR/2019/REC-
webauthn-1-20190304/

25. W3C: Web authentication: An API for accessing public key credentials -
level 2. W3C recommendation (Apr 2021), https://www.w3.org/TR/2021/REC-
webauthn-2-20210408/

26. W3C: Web authentication: An API for accessing public key credentials - level 3.
W3C first public working draft (Apr 2021), https://www.w3.org/TR/2021/WD-
webauthn-3-20210427/

27. Yubico: python-fido2 (Mar 2018), https://github.com/Yubico/python-fido2
28. Yubico: Discover YubiKey 5. strong authentication for secure login. https://www.

yubico.com/products/yubikey-5-overview (Jul 2021)
29. Yubico: libfido2 (Jul 2021), https://developers.yubico.com/libfido2
30. Yubico: webauthn-recovery-extension. https://github.com/Yubico/webauthn-

recovery-extension (2021)

https://www.rfc-editor.org/rfc/rfc8809.txt
https://www.rfc-editor.org/rfc/rfc8809.txt
https://www.iana.org/assignments/webauthn/webauthn.xhtml
https://www.iana.org/assignments/webauthn/webauthn.xhtml
https://groups.google.com/a/chromium.org/g/blink-dev/c/xHC3AtU_65A
https://groups.google.com/a/chromium.org/g/blink-dev/c/xHC3AtU_65A
https://bugs.chromium.org/p/chromium/issues/detail?id=1097972#c3
https://doi.org/10.1109/SP40000.2020.00047
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API#Browser_compatibility
https://github.com/microsoft/webauthn
https://github.com/w3c/webauthn/issues/1381
https://github.com/w3c/webauthn/issues/1381
https://venturebeat.com/2019/04/10/you-can-now-use-your-android-phone-as-a-2fa-security-key-for-google-accounts
https://venturebeat.com/2019/04/10/you-can-now-use-your-android-phone-as-a-2fa-security-key-for-google-accounts
https://github.com/solokeys/solo
https://github.com/solokeys/solo/blob/b86f0ee4e563f0b5ceb69770a6d6f64e42a688b6/docs/tutorial-getting-started.md
https://github.com/solokeys/solo/blob/b86f0ee4e563f0b5ceb69770a6d6f64e42a688b6/docs/tutorial-getting-started.md
https://github.com/solokeys/solo/blob/b86f0ee4e563f0b5ceb69770a6d6f64e42a688b6/docs/tutorial-getting-started.md
https://github.com/solokeys/solo2
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://www.w3.org/TR/2021/WD-webauthn-3-20210427/
https://www.w3.org/TR/2021/WD-webauthn-3-20210427/
https://github.com/Yubico/python-fido2
https://www.yubico.com/products/yubikey-5-overview
https://www.yubico.com/products/yubikey-5-overview
https://developers.yubico.com/libfido2
https://github.com/Yubico/webauthn-recovery-extension
https://github.com/Yubico/webauthn-recovery-extension

	Future-Proof Web Authentication: Bring Your Own FIDO2 Extensions
	1 Introduction
	2 Background
	2.1 FIDO2
	2.2 FIDO2 Extensions
	2.3 Extension Pass-Through

	3 Survey: Existing FIDO2 Extensions
	3.1 Standard Extensions
	3.2 Recovery Extension (Yubico)
	3.3 CaBLE Extension (Google)
	3.4 GoogleLegacyAppIdSupport Extension (Google)

	4 Survey: Compatibility of FIDO2 Extensions
	4.1 Web Browsers
	4.2 Client Libraries
	4.3 Authenticators
	4.4 Summary

	5 Design and Implementation of Custom Extensions
	5.1 Relying Party
	5.2 Web Browser
	5.3 Client Library
	5.4 Authenticator

	6 Discussion
	6.1 Extension Pass-Through
	6.2 Supporting FIDO2 Extensions via Browser Extensions
	6.3 Outlook

	7 Related Work
	8 Conclusion


